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Abstract 

The Helmholtz wave equation for X-rays in a dielec- 
tric medium is solved using the Rytov approximation 
for the X-ray phase perturbation. It is shown that 
under appropriate limits the solution yields the equa- 
tions for small-angle X-ray scattering, X-ray refrac- 
tion and absorption. This demonstrates that the 
Rytov approximation provides a unified treatment of 
small-angle X-ray phenomena. 

Introduction 

Small-angle X-ray scattering provides information 
about the size and the distribution of particles in a 
scattering medium. The usual formulation describing 
this scattering (Guinier & Fournet, 1955; Porod, 
1982) is equivalent to that obtained in the first Born 
approximation in the quantum theory of scattering 
(Gottfried, 1966). As the particle size increases, the 
scattering angle decreases and it becomes increas- 
ingly difficult to separate the scattered X-rays from 
the unscattered beam. In this regime, the first Born 
approximation begins to fail. For particles very 
much larger than the X-ray wavelength, it is more 
realistic to describe the interaction in terms of refrac- 
tion rather than scattering. 

In the early years of small-angle scattering, it was 
unclear whether the divergence of an X-ray (or neu- 
tron) beam as it passed through a finely divided 
material was due to diffraction or refraction (Weiss, 
1951). The two competing theories were that of 
Rayleigh-Gans (Rayleigh, 1911; Gans, 1925), in 
which the scattering was due to diffraction, and that 
of von Nardroff (1926), in which refraction was 
deemed to be responsible. The problem was solved in 
1946 by Van de Hulst (1957), who showed that both 
effects were limiting cases of the correct approach 
to the problem. More recently, a unified treatment 
of small-angle neutron scattering was developed for 
the single-particle cross section, encompassing the 
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transition from diffraction to refraction (Berk & 
Hardman-Rhyne, 1986). 

In this paper, an alternative treatment of the prob- 
lem is given using the Rytov approximation (Rytov, 
1937; from reference 11 in Chernov, 1960) for the 
phase shift in the X-ray beam as it traverses a 
dielectric medium. This approximation is well known 
in wave theory and optics and has similarities with 
the Born approximation (Devaney, 1981), although 
it is generally considered to be more accurate (Keller, 
1969; Oristaglio, 1985). The phase perturbation is 
obtained as a solution to the Helmholtz wave equa- 
tion for the medium. It is shown that the Rytov 
approximation leads to small-angle scattering in the 
limit of far-field observation and that it describes 
X-ray refraction and absorption in large particles at 
short wavelengths. In this way, the relationship 
between X-ray scattering and X-ray refraction is 
emphasized. 

The Helmholtz wave equation 

The Helmholtz equation for the interaction of X-rays 
in a non-magnetic dielectric material can be obtained 
from the following Maxwell equations: 

D = (1 + x)E,  (1) 

(1/c)OD/Ot = V × H, (2) 

(1/c)OH/Ot = - V × E, (3) 

V. D = 0. (4) 

The dielectric susceptibility x(r) for X-rays is very 
small and it is taken here in an average sense over a 
large volume of the dielectric, such that its variations 
with position r are very much smaller than the X-ray 
wavenumber k, i.e. I VXIxI << k. This is equivalent 
to expanding x(r) as a Fourier series in reciprocal- 
lattice vectors over a local region about r, as is done 
in Takagi's (1969) theory of imperfect crystal diffrac- 
tion, and retaining only the zeroth-order coefficient 
Xo(r). This assumes that the incident X-rays are far 
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from a lattice diffraction condition. Then, the spatial 
derivatives of ,t'(r) can be neglected and (1), (2) and 
(3) lead to the wave equation 

(1 + X)(1/cZ)O2D(r,t)/Ot 2= - 17 × 17 × D(r,t) (5) 

= WD(r,t), 

where the vector identity 17 × 17 × D = 17(17. D) - 
172D and (4) have been used. 

In the usual way, D(r,t) is written as a product 
of a space-dependent amplitude D(r) and a time- 
dependent phase with angular frequency w. If the 
vacuum wave number is defined as k = o•/c, then the 
equation for the wave amplitude is the Helmholtz 
equation 

~D( r )  + k2[1 + x(r)]D(r) = 0. (6) 

This equation must be satisfied for both vector com- 
ponents separately, so that only the scalar Helmholtz 
equation need be considered. Furthermore, it is 
assumed that the scattering angles are small so that 
polarization effects can be ignored. The factor (1 + 
,t') is the square of the refractive index, n. In a 
homogeneous material, (6) yields a plane-wave solu- 
tion with a modified wave vector k(1 + X) ~/2. 

Eikonal equation and the Rytov approximation 

An approximate solution to (6) can be found by 
introducing a position-dependent optical path ~o(r), 
or eikonal (Born & Wolf, 1964; Gottfried, 1966), 

D(r) = Doexp[ik~o(r)], (7) 

where Do is the wave amplitude specified at some 
fixed point. In general, the eikonal is complex and 
controls both the phase and the amplitude variations 
induced by the medium. When (7) is inserted in (6), it 
is found that the eikonal obeys a Riccati equation in 
Vq~(r), 

(i/k)W~o(r)-[17~o(r)] z +[1 + x(r)] = 0. (8) 

This equation is impossible to solve exactly when 
x(r) is an arbitrary function of r. Instead, consider 
the phase perturbation 

~o(r) = ~oo(r) + 6~o(r), (9) 

where ~oo(r) satisfies the vacuum eikonal equation, 

(i/k)W~oo(r)-[V~oo(r)] 2 + 1 =0.  (10) 

Since this equation describes the vacuum propa- 
gation of the wave, its solution is trivial: 

k~o0(r) = k . r .  (11) 

The normal to the wave front defines the direction of 
pro_pagation of the wave so that the gradient V~0o(r) 
= 1~ is the unit vector in the propagation direction of 
the X-ray beam in a vacuum. 

The Rytov approximation is obtained when (9) is 
inserted in (8) and only first-order terms in 6~o(r) are 
retained. Then, the phase perturbation is governed 
by 

( i /k)W6q~- 27~oo'V6~o+ ) = O ,  (12) 

where, for convenience, the position dependences are 
assumed and are no longer shown. The Rytov 
approximation requires that I V~o[ << 1. Since 
I V~5~ol ~-I,t'l [see (13) below], the condition is met 
when 12'1 << 1. This is usually the case for X-rays. 

Before proceeding with the solution to (12), it is 
worth considering the short-wavelength limit, 
1/k---,O. Then, (12) becomes 

1~. VcSq~ = ,t'/2 (13) 

o r  

d6~o/ds = X(s)/2, (14) 

where s represents the distance travelled by the X-raft 
beam along the vacuum propagation direction, k. 
Then, the phase perturbation is given by 

= x ( s ) d s .  (15) 

The phase of the X-ray beam is shifted by an 
amount kS~o as a result of the dielectric medium in 
the path of the beam. If there is a variation in X 
transverse to f~, then the phase will also have a 
transverse variation. Since the propagation direction 
is defined by V~o, the transverse variation in 8~o leads 
to a change in the direction of propagation, relative 
to 1~. This is the refraction of waves by the medium. 
A derivation of Snell's law of refraction of X-rays 
using the phase perturbation is given below. The 
refraction of optical waves at a plane interface in the 
Rytov approximation is discussed by Oristaglio 
(1985). 

An exact solution to (12) can be found by making 
use of the transformation 

eSq,(r) = e x p [ -  ikq~o(r)]F(r), (16) 

where F(r) is a function to be determined. Substi- 
tuting (16) into (12) and making use of (10) yields for 
F(r) 

~F( r )  + kaF(r)= ikx(r)exp[ik~oo(r)], (17) 

which is the inhomogeneous Helmholtz equation. 
The solution to this is (Morse & Feshbach, 1953) 

F(r) = - (ik/47r)fx(r')exp[ik~oo(r')]G(r - r')d V', 

v. (18) 

where the free-space Green's function in three 
dimensions is 

G(r - r') = exp(iklr - r'l)/Ir - r'l. (19) 

With (16), (18), (19) and the vacuum eikonal (11), 
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the phase perturbation is described by 

t~o(r) = - ( i k / 4 7 r ) e x p ( -  ik" r) 

× fx(r ' )[exp( ik"  r" + ik l r - r ' ] ) / l r - r ' l ]dV ' .  

v, (20) 

This equation gives the perturbation in the phase of 
the vacuum wave as it traverses a dielectric medium. 
In the following sections, it is shown that the first 
Born approximation is obtained when the phase 
perturbation is small and this yields the equation for 
small-angle scattering in the far-field region. Under 
the conditions where the wave number k is very 
large, (20) also describes the i'efraction of X-rays, as 
given by (15). 

Small-angle X-ray scattering 

The derivation here follows that of Gottfried (1966) 
for the quantum-mechanical scattering of particles 
observed in the far-field region, r---, oo. For observa- 
tions of the X-ray beam far from the scattering 
point, r >> r' and 

Ir - r'l --r(1 + r'2/r 2 - 2r. r'/r2) 1/2 

- r (1  - r .  r'/P). (21) 

Then, 

kit - r'l = kr - k ' .  r', (22) 

where k ' = / ~  is the wave vector in the direction of 
scattering. Since the wave number is unaltered, this 
represents elastic scattering of the X-rays to the point 
of observation. With the scattering vector defined as 

q = k ' - k  (23) 

and r' ignored in the denominator, (20) becomes 

6~o(r) = - ( i k / 4 ~ ' r ) e x p ( -  & .  r + ikr) 

x f x ( r ' ) e x p ( - i q . r ' ) d V ' .  (24) 
v, 

If the phase perturbation is small, then 

exp (ik~3~o)= 1 + ikSq~. (25) 

This is equivalent to the first Born approximation. 
The wave at the observation point is given by 

D(r) = Do exp (&" r) + Do(kE/4~'r) exp (ikr) 

x f x ( r ' ) e x p ( -  iq. r')d V'. (26) 
v' 

The first term in (26) is the unscattered vacuum wave 
at r and the second term is the wave scattered from 
the volume V'. To make an explicit connection with 
small-angle scattering, note that the dielectric suscep- 
tibility for a wave with wavelength A is related to the 
electron density p(r) by (see e.g. Az~roff, Kaplow, 

Kato, Weiss, Wilson & Young, 1974) 

x(r) = - (eZa2/7rmc2)p(r). (27) 

Then, the wave amplitude arising from the scattering 
of X-rays is 

Ds = C f  p ( r ' ) e x p ( -  iq . r ')dV',  (28) 
v' 

where C is a constant at a fixed observation point. 
This expression forms the basis of small-angle X-ray 
scattering calculations in the continuum approxi- 
mation (Guinier & Fournet, 1955; Porod, 1982). 

X-ray refraction and absorption 

In this section, it is demonstrated that, for scatterers 
very much larger than the wavelength of the X-ray 
and in which the X-ray beam is almost a plane wave, 
the asymptotic solution to the phase perturbation 
(20) leads directly to the refraction of the transmitted 
beam. In the case of an absorbing medium, X is 
complex and the transmitted X-ray intensity decays 
exponentially with distance (Beer's law). 

The derivation is based on the method of station- 
ary phase (Van Kampen, 1949; Born & Wolf, 1964, 
Appendix III). For this purpose, it is convenient to 
choose a set of coordinate axes such that the Z axis 
is aligned with the direction of propagation. Con- 
sider again 

F(r) = - ( i k / 4 ~ - ) f x ( r ' ) e x p ( i k . r ' +  ikR) /RdV' ,  (29) 
v' 

where 

r - r '  = ( x  - x ' ) ~  + ( y  - y ' ) ~  + ( z  - z ' ) ~  (30) 

and 

R = [ ( x  - x ' )  2 -~- ( y  - y , ) 2  _~_ ( z  - z t )2]  112. ( 3 1 )  

The integral in (29) is first taken over the X'Y" plane 
at some fixed position z' along the path of the beam. 
Over a region in the medium small enough for R to 
be almost constant, the exponential factor in the 
integrand changes sign many times, provided k is 
large. Then, the contribution of this small region to 
the integral is negligible. This is not true where the 
phase is constant or stationary. To form an asymp- 
totic solution in this case, consider the integral in the 
form 

f fg(x ,y)exp[ikf(x ,y)]dxdy,  (32) 

where g and f are independent of k, which is large. 
Now, let (xo,Yo) be the point of stationary phase 
where Of/Ox = Of/Oy = 0 and perform a Taylor-series 
expansion about this point to second order, 

f (x ,y)  =f(xo,Y0) + (a/2)s c2 + (/3/2)r/2 + Yscr/, (33) 
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where 

a = 02f/Ox2lxo,yo; fl = O2f/Oy21xo,yo; y =  02f/OyOXlxo,yo; 

(34) 

and 

gr = (x - x0); r / =  (y - Yo). (35) 

Then, the stationary terms can be brought outside 
the integral (32), with the result 

g(xo,Yo)exp [ikf(xo,Yo)] 

x : : exp[ ik (a (  2 + / ~ 2  .q_ 2y(r/)/Z]dsXdr / 
- - o o  - - o o  

= g(xo,Yo)exp [ikf(xo,Yo)](27ri/k)[afl - y21- i/2, 

(36) 

provided aft  > y2 and a > 0. 
Now, comparison of (32) and (29), with the 

reminder that k = kL gives 

f (x ' ,y ' ,z ' )  = z" + [(x - x') 2 + (y - y,)2 + ( z -  z')2] '/2 

(37) 

and the point of stationary phase occurs when x' = x 
and y ' =  y. At this point, 

a = f l = l / I z - z ' l ,  3 '=0 ,  (38) 

R = Iz - z'l (39) 

and 

f ix '  = x, y' = y, z') = z' + [(z - z')2] ]/2 = z, (40) 

provided z > z'. Thus, the asymptotic result for large 
k is 

F(x,y,z) = ½f x(x ,y , z ' )exp( ikz)dz '  (41) 

and the phase perturbation becomes 
I / t 6q~ = ~f x (x ,y , z  )dz,  (42) 

which is identical to the phase (15) obtained directly 
from the eikonal equation. 

To demonstrate that (42) gives rise to refraction, 
consider two homogeneous media, with dielectric 
susceptibilities Y~ and Y2, separated by a common 
boundary with its normal inclined at an angle 0 to 
the Z axis (Fig. 1). The direction of propagation in 
medium 1 is along the Z axis, k = k~. Because of this 
boundary, the phase perturbation at some point (x,z) 
in medium 2 is 

&,o = (z - xtanO)x2/2 + xtanOxl/2.  (43) 

The propagation direction at (x,z) is then 

I7~Oo + V6~o = f~(1 + X2/2) + :~tan0(xz - X 2 ) / 2 .  (44) 

The angular deviation with respect to k - - k ~  associ- 
ated with this change in direction is 

80 = [tan0(xl - x2)/2]/[1 + X2/2], (45) 

since the X are small. Rearrangement and the addi- 
tion of sin0 to both sides, gives 

(1 + Xl/2)sin 0 = (1 + X2/2)(sinO + cos060) (46) 

--(1 + Xz/2)sin(O + 60), 

since 30 is small. This is recognized as Snell's law of 
refraction with a refractive index 

n = (1 + X) m =  1 + X/2. (47) 

Now suppose that X is constant in the dielectric 
medium and consider the imaginary component that 
determines the absorption in the medium. Then, the 
absorption per unit length is defined by 

# - kIm (X) (48) 

and the intensity change with distance z is obtained 
from (42), (7) and (9): 

[D(z)l 2 = IDo12exp( - Ixz). (49) 

This exponential decay of the beam with distance in 
the medium is Beer's law. The expression for absorp- 
tion in an inhomogeneous medium, expressed by (15) 
or (42), has the form of a Radon transform, which is 
used extensively in solving inverse problems (Deans, 
1983). In particular, it forms the basis of X-ray 
computed tomography. The more general expression 
(20) has been proposed as the basis of reconstructive 
tomography using ultrasonic wave fields (Devaney, 
1986). 

Concluding remarks 

In X-ray scattering from large particles, the phase 
perturbation (20) provides a more realistic descrip- 
tion of the scattering process, as it contains both 
diffraction and refraction effects. It is valid when the 
dielectric susceptibility varies slowly over the scale of 
the X-ray wavelength and it allows for large cumula- 

oOO6~'1 ~~'"~"~~k ",," " "-", '", "" "" 
\ ",, . . ",, \.. ".\ ",, ",, ".., X 

", ,, ',. ",..,'.,,.-,.'-,,, ',., ",,. ~.~.~. ~ "\. 

,. ,. ,, ,.,,.-,. ,,,?,,',,",.", " 

Fig. 1. The geometry for deriving Snell's law of refraction from 
the perturbation in the X-ray phase as it crosses a boundary. 
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tive phase shifts in the scattered wave. This contrasts 
with the first Born approximation and the usual 
formulation of small-angle scattering, which require 
the scattered field to be small. Furthermore, the first 
Born approximation breaks down if the scattering is 
weak but extends over a region that is large com- 
pared with the incident wavelength (Gottfried, 1966). 
In this case, (25) is not valid. 

The fact that refraction phenomena and scattering 
are intimately related is not new. Ewald and Oseen 
(Born & Wolf, 1964) have provided rigorous 
derivations of the laws of refraction and reflection of 
light from considerations of scattering of electromag- 
netic radiation from electric dipoles in optical media 
(the Ewald-Oseen extinction theorem). Here, a 
unified treatment of small-angle scattering and 
refraction of X-rays has been obtained using the 
Rytov approximation for the X-ray phase. 
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Abstract 

Statistical methods are used to derive an expression 
for the average X-ray diffraction intensity, as a 
function of (sin0)/A, of crystals with an incommen- 
surate one-dimensional modulation. Displacive and 
density modulations are considered, as well as a 
combination of these two. The atomic modulation 
functions are given by truncated Fourier series that 
may contain higher-order harmonics. The resulting 
expression for the average X-ray diffraction intensity 
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is valid for main reflections and low-order satellite 
reflections. The modulation of individual atoms is 
taken into account by the introduction of overall 
modulation amplitudes. The accuracy of this expres- 
sion for the average X-ray diffraction intensity is 
illustrated by comparison with model structures. A 
definition is presented for normalized structure fac- 
tors of crystals with an incommensurate one- 
dimensional modulation that can be used in direct- 
methods procedures for solving the phase problem in 
X-ray crystallography. A numerical fitting procedure 
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